A Self-organizing System for Large-scale Content-based Information Retrieval

Stanislav Bartoň, Vlastislav Dohnal, Jan Sedmidubský, Pavel Zezula

Faculty of Informatics, Masaryk University Brno, Czech Republic

SemWeb Svratka November 30–December 2, 2008

Dohnal et al. (MU Brno)

A Self-organizing Search System

December 1, 2008 1 / 19

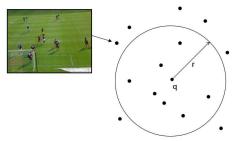
Motivation

- Approaches
 - Metric Space
 - Self-organizing Systems
- Metric Social Network
 - Architecture
 - Query Routing
 - Experimental Trials
- Future Work

• Our aim – to develop an engine suitable for searching in large networks

3

• Our aim – to develop an engine suitable for searching in large networks


• Problems:

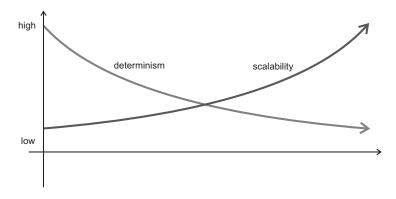
- Non-sortable
- Similarity-based (content-based) reasoning \Rightarrow Metric space
- e Huge quantities of data
 - Exponential growth
 - Scalability problem ⇒ Self-organizing systems

Metric Space

- Metric space \mathcal{M} is a pair $\mathcal{M} = (\mathcal{D}, d)$, where:
 - $\bullet \ \mathcal{D}$ is a set of objects points in the metric space
 - *d* is a metric function measuring a distance (*similarity*) between two objects

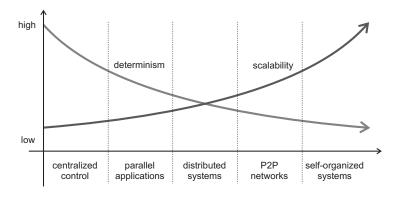
• Queries:

- Range query R(q, r)
- Nearest-neighbor query NN(q)


• Scalability - increasing amount of data, number of users (queries)

< 🗇 🕨

3


Search Problem

- Scalability increasing amount of data, number of users (queries)
- Determinism:
 - exact match \rightarrow similarity
 - precise answer \rightarrow approximate answer

Search Problem

- Scalability increasing amount of data, number of users (queries)
- Determinism:
 - $\bullet \ \text{exact match} \to \text{similarity}$
 - precise answer \rightarrow approximate answer

Self-organizing Systems

- A set of interacting components creating a desired outcome
 - Evolves in time and space
 - Inspired in biology, sociology, physics, ...

- Properties:
 - Scalability
 - Adaptability
 - Robustness

- Our aim apply principles of self-organization to build a robust search engine
 - A desired outcome = a search engine

- Properties:
 - Scalability
 - Adaptability
 - Robustness

Metric Social Network

Metric Social Network (mSN) =

= Metric space + Self-organization principles

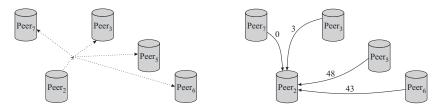
Metric Social Network (mSN) =

= Metric space + Self-organization principles

- Self-organizing network for similarity searching
- Supports range queries (answers are approximate)
- Structure:
 - Peers computers
 - Relationships logical connections between peers

relationships \neq physical connections between peers

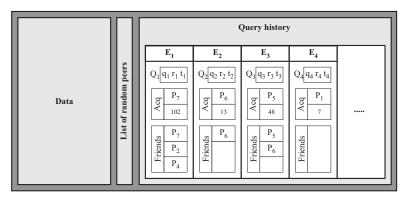
Peers


- Data local data governed by the peer, e.g. images
- List of random peers
- Query history experience with previous querying

Relationships

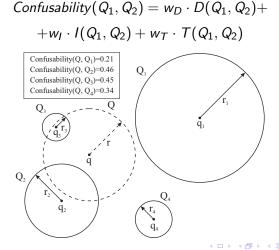
- Exploited by the query-routing algorithm
- Based on the social-network paradigm:
 - Acquaintance relationships navigation purposes
 - Friend relationships identify peers similar in content

Relationships


• Created according to peers' answers to the processed query

- Acquaintance peer with the best quality of the answer
 - Acquaintance(Q) = Peer₅
 - Acquaintance relationship: between Peer2 and Peer5
- Friends peers with the significant quality of the answer
 - $Friends(Q) = \{Peer_5, Peer_6\}$
 - Friend relationships: between each of two friends

Peer Anatomy


- Query history a list of *entries* E_1, \ldots, E_n containing metadata about queries processed so far
 - Query identification (query object, radius, timestamp)
 - Acquaintance
 - List of friends

- User poses a query at the query-issuing peer
- Each peer selects the peers to which the query is forwarded
 - Exploitation strategy
 - Take the most relevant peers to the query
 - Exploration strategy
 - Take some random peers
- The query is evaluated on local data of contacted peers
- The quality of answers is determined by the query-issuing peer
- The query history is updated

Confusability

• Confusability expresses the similarity between two range queries Q_1 and Q_2 with timestamps

- Retrieve five most confusable entries from the query history
- Oetermine max_confusability of these five entries
- 8 Route the query
 - Exploitation strategy
 - Depending on max_confusability, determine the number n of entries to use

$max_confusability \ge$	0.90	0.65	0.40	0.15	0.00
n	1	2	3	4	5

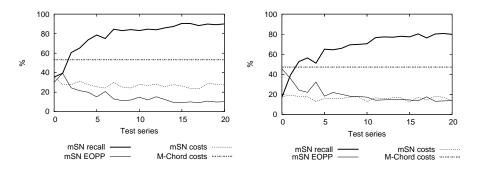
- Get acquaintances from these entries and forward the query
- Exploration strategy
 - With a probability 1 max_confusability, pick a peer from the list of random peers and forward the query to this peer.

Query Routing (cont.)

- Query forwarding stops when:
 - Maximum hop count is reached
 - An acquaintance of higher quality does not exist
- The query is evaluated on local data of:
 - The most relevant acquaintances
 - Friends of the most relevant acquaintances respecting the query
- The answers are returned to the query-issuing peer
 - The qualities of answers are computed
 - New relationships are established

Experimental Trials

Networks


- 500 peers indexing 2,500,000 images
- 2,000 peers indexing 10,000,000 images

Measures

- Costs a ratio between the number of accessed peers and the number of all peers in the network in percents
- Recall a ratio between the sizes of mSN answer and the precise answer in percents
- EOPP a normalized error on peers' positions expressing the inaccuracy of approximate answer of mSN

Experimental Trials (cont.)

- A batch of random 50 range queries between each of two test series
- Each test series consisted of fixed 20 range queries
- Results compared to *M-Chord* a structured P2P network

- Dynamicity
 - Massive peers' churning
 - Joining two networks
- Knowledge management
 - Positive / negative feedback of querying

Thank you for your attention.

- Supported by:
 - National research project 1ET100300419
 - EU IST FP6 project 045128 SAPIR
 - $\bullet\,$ Czech Science Foundation projects 201/07/P240 and 102/05/H050