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Continuous random variables X ∼ (R, f )

f (x) ≥ 0 X ∈ R support

Pearson’s system:

f ′(x)

f (x)
=

a + yx

c0 + c1x + c2x2
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Some basic concepts

I. Probability: numerical characteristics are moments

EX k =
∫
X xk f (x) dx

mean value: EX
variance: VarX = E (X − EX )2

II. Information and uncertainty:

Information theory: mean uncertainty of a distribution is

differential entropy HF = −
∫
X f (x) log f (x) dx

Statistics: Fisher information (defined for parameters of
parametric distributions only)
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But there are some problems:
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Problem I: Moments
There are heavy-tailed distributions having neither variance nor
even mean value

Cauchy distribution

f (x) =
1

πσ(1 + x2

σ2 )
, EX ∼ x−1
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Problem II: Differential entropy

even in the case of the normal distribution

HF = −
∫
X
f (x) log f (x) dx = log

(
σ
√

2πe
)

is negative if σ < 1/
√

2πe
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Description of continuous distributions by classical probability
theory is useful for distributions with neither too small nor too
large variability
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Problem III. Typical value: mean, mode or median ?
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Point estimation

X : (x1, ..., xn) z Fθ = {Fθ : θ ∈ Θ ⊆ Rm}, θ = (θ1, ..., θm)

Moment method

θ̂n :
1

n

n∑
i=1

xki = EX k(θ) k = 1, ...,m

Inference function ψ(x ; θ)

1

n

n∑
i=1

ψk(xi ; θ) = Eψk(θ) k = 1, ...,m

classical: ML ψk = ∂
∂θk

log f (x ; θ) Fisher score, Eψ2
k FI

robust: µ̃, σ̃: ψ(x ; µ̃, σ̃) a bounded function
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New view

Every model has a finite center and variability and their estimates
are the center and variance of a random sample from them
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Starting position

We have find a ”natural” inference function SF (x) of the
model F and study random variables SF (X ) instead of X

Let G : g(y − µ)

∂
∂µ log g(y − µ) = − 1

g(y−µ)
d
dy g(y − µ) = SG (y − µ)

score function SG (y) = −g ′(y)
g(y) SCauchy (y) = 1

σ
2y/σ

1+(y/σ)2
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6 simple score functions: 6 different types

type SG (y) g(y) distribution

UE sinh y = ey−e−y

2
1
K e−

1
2

(ey+e−y ) hyperbolic

UP y 1√
2π
e−

1
2
y2

normal

BU ey − 1 eye−e
y

Gumbel

UB 1− e−y e−ye−e
−y

extreme value

BB tanh y
2 = ey−1

ey+1
ey

(1+ey )2 logistic

BR 2y
1+y2

1
π(1+y2)

Cauchy
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Normal distribution

g(y ;µ, σ) =
1√
2πσ

e−
1
2

( y−µ
σ

)2
SG (y ;µ, σ) =

y − µ
σ2

EX = µ, VarX = 1
ESG

2 = σ2
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’Prototype beta’

g(y) =
epy

(ey + 1)p+q
SG (y) =

qey − p

ey + 1

EX = log p
q−1 y∗ = log p

q
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Hyperbolic and normal
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Gumbel and extreme value

Zdeněk Fabián

New view on continuous probability distributions



Score random variable SG (Y )

SG (y) = −g ′(y)
g(y)

typical value y∗ : SG (y) = 0 (mode)

score moments: ESk
G =

∫
X Sk

G (y)g(y) dy are finite

ESG = 0,ES2
G Fischer information for y∗

suggested measure of variability: score variance
ω2
G ≡

1
ES2

G

parametric estimates: SM method (y1, ..., yn) from G

1

n

n∑
i=1

Sk
G (yi ; θ) = ESk

G (θ), k = 1, ...,m

Zdeněk Fabián

New view on continuous probability distributions



Score random variable SG (Y )

SG (y) = −g ′(y)
g(y)

typical value y∗ : SG (y) = 0 (mode)

score moments: ESk
G =

∫
X Sk

G (y)g(y) dy are finite

ESG = 0,ES2
G Fischer information for y∗

suggested measure of variability: score variance
ω2
G ≡

1
ES2

G

parametric estimates: SM method (y1, ..., yn) from G

1

n

n∑
i=1

Sk
G (yi ; θ) = ESk

G (θ), k = 1, ...,m
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Why this approach is not used in statistics ?

Why the score function is not taken as inference function ?

The reason is that − f ′(x)
f (x) for F on X 6= R does not work:

f (x) = 1
2e
−x/2
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Scalar score function on X 6= R
Idea: Scalar score (influence) function of F on X 6= R
exists. It is given by different formulas on different X .

Key word: Transformation

Y na R, G , g ,SG . η−1 : R → X strictly increasing continuous

Transf. r.v. X = η−1(Y ) has density
(y → log x , x → ey )

f (x) = g(η(x))η′(x)

Definition: t-score of F (x) = G (η(x))

TF (x) = SG (η(x))
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Transformed distributions
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Exponential distribution Y = η(X ) = logX

g(y) = eye−e
y

SG (y) = ey − 1

f (x) = xe−x
1

x
TF (x) =

d

dx
xe−x = x − 1
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Exponential distribution Y = η(X ) = logX
’Prototype’

g(y) = eye−e
y

SG (y) = ey − 1

transformed

f (x) = xe−x
1

x
TF (x) =

d

dx
(xe−x) = x − 1
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Transformed distributions

type SG (y) TF (x) f (x)

UE ey−e−y

2
1
2 (x − 1

x ) 1
Kx e

−(x+1/x) inv. Gaussian

UP y log x 1√
2πx

e−
1
2

log2 x lognormal

BU ey − 1 x − 1 e−x exponential

UB 1− e−y 1− 1/x 1
x2 e
−1/x Fréchet

BB ey−1
ey+1

x−1
x+1

1
(1+x)2 loglogistic

BR 2y
1+y2

2 log x
1+log2 x

1
πx(1+log2 x)

log-Cauchy
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Transformed location parameter on R+

y − µ
σ
→ log x − log τ

σ
= log

(x
τ

)c

Let 1
τ f (x/τ)

Fisher score
= ∂

∂τ log( 1
τ f (x/τ)) = 1

τ [−1− f ′

f
x
τ ]

t-score
TF (x/τ) = − τ

f (x/τ)
d
dx [x 1

τ f (x/τ)] = −1− x
τ
f ′

f

t-score is proportional to the Fisher score for central parameter
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For given F : which η : X → R ?

a) universal:

η(x) =

{
log x pro X = (0,∞)

log (x )

(1− x)
pro X = (0, 1)

b) innate:

loggamma on X = (1,∞)

f (x) =
cα

Γ(α)
(log x)α−1 1

xc+1
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{
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f (x) =
cα

Γ(α)
(log x)α−1 1

xc+1
=

cα

Γ(α)
(log x)α

1

xc
1

x log x

η(x) = log log x
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Lognormal

g(y) =
1√
2πσ

e−
1
2

( y−µ
σ

)2
SG (y) =

y − µ
σ2

f (x) =
1√

2πσx
e−

1
2

log2( x
τ

)c TF (x) = c log(x/τ)c

c = 1/σ
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Type BU: Weibull, Type BU: gamma
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Type UE: gen. inverse Gaussian, Type UB: Fréchet
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Type UB: beta-prime

f (x) =
1

B(p, q)

xp−1

(x + 1)p+q
TF (x) =

qx − p

x + 1
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Distributions on (0, 1): Type UP: Johnson
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Type BB: beta

h(x ; p, q) =
1

B(p, q)
xp−1(1−x)q−1 TH(x ; p, q) = (p+q)x−p

with x∗ = p/(p + q)

Zdeněk Fabián

New view on continuous probability distributions



Kumaraswamy

h(x) = λϕxλ−1(1−xλ)ϕ−1 TH(x) = (1+λ)x−λ+λ(ϕ−1)
(1− x)xλ

1− xλ
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Systematics of distributions
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Mean, mode or median ?

EX =
∫
xf (x) dx
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Typical value is x∗ : TF (x) = 0

score mean x∗ = η−1(y∗) is the image of the mode of the
prototype
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Mean EX and score mean x∗

f (x) = cxc−1e−x
c

f (x) =
q

(1 + x)q+1

EX = Γ(1 + 1/c) x∗ = 1 EX =
1

q − 1
x∗ =

1

q
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Score average

S̄F =
1

n

n∑
i=1

SF (Xi )

SF (x̂∗) = S̄F so that x̂∗ = S−1
F (S̄F )

In case of some distributions x̂∗ is a known statistic:

distribution x̂∗

normal, gamma, beta x̄
lognormal x̄Geometric

Weibull (c const.) 1
n (
∑

xci )1/c

heavy tails x̄Harmonic
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Score variance ω2
F = 1/ES2

F

G g(y) SG (y) y∗ ω2
G VarX

normal 1√
2π
e−

1
2
u2

u/σ µ σ2 σ2

logistic 1
σ

u
(u+1)2

1
σ
u−1
u+1 µ 3σ2 π2σ2/3

Cauchy 1
σπ

1
1+u2

1
σ

2u
1+u2 µ 2σ2 −

u = (y − µ)/σ

F f (x) TF (x) x∗ ω2
F

gamma γα

xΓ(α)x
αe−γx γx − α α

γ
α
γ2

Weibull c
x ( xτ )ce−( x

τ
)c c(( xτ )c − 1) τ τ2

c2

Weibull EX = τΓ(1/c) VarX = τ2Γ(2/c)Γ2(1/c)
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beta-prime f (x) = 1
B(p,q)

xp−1

(x+1)p+q

Central and variability characteristics:

Euclidean EX = p
q−1 , VarX = p(p+q−1)

(q−2)(q−1)2

Scalar-valued score x∗ = p
q ω2

F = p(p+q+1)
q3
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Estimates of the score mean and score variance in a
contaminated beta-prime model

ML
maximum likelihood SM score moment estimates
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New characteristics of continuous random variables

scalar-valued score: likelihood score for
the typical value of distribution, the score mean

and score variance, representing variability
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